Part Number Hot Search : 
DLM60 110003 00095 PJU1084L EFM30106 EMK21 6A501 BC549C
Product Description
Full Text Search
 

To Download APW8802 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 1 a n p e c r e s e r v e s t h e r i g h t t o m a k e c h a n g e s t o i m p r o v e r e l i a b i l i t y o r m a n u f a c t u r a b i l i t y w i t h o u t n o t i c e , a n d a d v i s e c u s t o m e r s t o o b t a i n t h e l a t e s t v e r s i o n o f r e l e v a n t i n f o r m a t i o n t o v e r i f y b e f o r e p l a c i n g o r d e r s . h i g h i n p u t v o l t a g e 8 a p w m d c / d c c o n v e r t e r f e a t u r e s g e n e r a l d e s c r i p t i o n o p e r a t e s f r o m a n i n p u t b a t t e r y v o l t a g e r a n g e o f + 3 v t o + 2 5 v 1.6% 0.75v reference - over line, load regulation, and operating temp. h i g h e f f i c i e n c y a l l o v e r 9 0 % a t v o u t = 1 v , v i n = 1 9 v c o n d i t i o n power-on-reset monitoring on pvcc and vcc pins excellent line and load transient responses i n t e g r a t e d 1 2 m w @ v c c = 5 v n - c h a n n e l m o s f e t f o r h i g h s i d e i n t e g r a t e d 1 2 m w @ v c c = 5 v n - c h a n n e l m o s f e t f o r l o w s i d e programmable pwm frequency from 100khz to 500khz b u i l t - i n 1 . 2 m s d i g i t a l s o f t - s t a r t & s o f t - s t o p b u i l t - i n c o t m o d e c o n t r o l f o r f a s t r e s p o n s e a n d m l c c s u p p o r t s power good monitoring 70% under-voltage protection 125% over-voltage protection adjustable current-limit protection - using b u i l t - i n low-side mosfet?s r ds(on) over-temperature protection t q f n 5 x 6 - 2 8 ( p o w e r p a k ) p a c k a g e lead free and green devices available (rohs compliant) a p p l i c a t i o n s n o t e b o o k t a b l e p c h a n d - h e l d p o r t a b l e a i o p c the APW8802 is a 8a, synchronous, step-down converter with integrated 12m w n-channel high-side mosfet and 12m w low-side mosfet. the APW8802 steps down high voltage to generate low-voltage chipset or ram sup- plies in notebook computers. the APW8802 provides excellent transient response and accurate dc voltage output in either pfm or pwm mode. in pulse frequency mode (pfm), the APW8802 provides very high efficiency over light to heavy loads with loading- modulated switching frequencies. in pwm mode, the con- verter works nearly at constant frequency for low-noise requirements. the APW8802 is equipped with accurate current-limit, output under-voltage, and output over-voltage protections, perfect for nb applications. a power-on-reset function monitors the voltage on v pvcc and v cc to prevent wrong operation during power-on. the APW8802 has a 1.2ms digital soft-start and built-in an integrated output discharge device for soft-stop. an internal integrated soft-start ramps up the output voltage with programmable slew rate to reduce the start-up current. a soft-stop function actively discharges the output capacitors. the APW8802 is available in tqfn5x6-28 (power pak) package. s i m p l i f i e d a p p l i c a t i o n c i r c u i t v out l out en APW8802 v in r ocset ocset r ton ton 5v lx boot vcc fb pvcc
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 2 o r d e r i n g a n d m a r k i n g i n f o r m a t i o n p i n c o n f i g u r a t i o n n o t e : a n p e c l e a d - f r e e p r o d u c t s c o n t a i n m o l d i n g c o m p o u n d s / d i e a t t a c h m a t e r i a l s a n d 1 0 0 % m a t t e t i n p l a t e t e r m i n a t i o n f i n i s h ; w h i c h a r e f u l l y c o m p l i a n t w i t h r o h s . a n p e c l e a d - f r e e p r o d u c t s m e e t o r e x c e e d t h e l e a d - f r e e r e q u i r e m e n t s o f i p c / j e d e c j - s t d - 0 2 0 d f o r m s l c l a s s i f i c a t i o n a t l e a d - f r e e p e a k r e f l o w t e m p e r a t u r e . a n p e c d e f i n e s ? g r e e n ? t o m e a n l e a d - f r e e ( r o h s c o m p l i a n t ) a n d h a l o g e n f r e e ( b r o r c l d o e s n o t e x c e e d 9 0 0 p p m b y w e i g h t i n h o m o g e n e o u s m a t e r i a l a n d t o t a l o f b r a n d c l d o e s n o t e x c e e d 1 5 0 0 p p m b y w e i g h t ) . apw 8802 handling code tem perature range package code apw 8802 xxxxx package code qb : tqfn5x6-28 temperature range i : -40 to 85 o c handling code tr : tape & reel assembly material g : halogen and lead free device apw 8802 qb : assembly material xxxxx - date code pok 2 pgnd 4 gnd 3 pgnd 5 fb 1 nc 7 nc 6 lx 8 l x 1 1 l x 1 0 l x 1 2 l x 1 3 l x 9 l x 1 4 19 vin 18 vin 16 lx 17 lx 15 lx 21 boot 22 pgnd 20 vin 2 7 p v c c 2 6 o c s e t 2 5 v o u t 2 3 e n 2 4 t o n 2 8 v c c = thermal pad (connected to gnd plane for better heat dissipation) tqfn5x6-28 (top view) vin pgnd lx
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 3 a b s o l u t e m a x i m u m r a t i n g s ( n o t e 1 ) symbol parameter rating unit v cc vcc supply voltage (vcc to gnd) - 0.3 ~ 7 v v pvcc pvcc supply voltage (pvcc to p gnd) - 0.3 ~ 7 v v boot - gnd boot supply voltage (boot to gnd) - 0.3 ~ 3 5 v v boot boot supply voltage (boot to lx ) - 0.3 ~ 7 v v in input power v oltage (vin to gnd) - 0.3 ~ 25 v all other pins (vout, ton, en, ocset and fb to gnd) - 0.3 ~ v cc +0.3 v v lx lx voltage ( lx to gnd) <400ns pulse width >400ns pulse width - 5 ~ 3 5 - 1 ~ 28 v v pok p ok supply voltage ( pok to gnd) - 0.3 ~ 7 v v pgnd pgnd to gnd voltage - 0.3 ~ 0.3 v p d package power dissipation, t a =25 o c 2.5 w t j maximum junction temperature 150 o c t stg storage temperature - 65 ~ 150 o c t sdr maximum lead soldering temperature, 10 seconds 260 o c t h e r m a l c h a r a c t e r i s t i c s symbol parameter typical value unit q ja thermal resistance - junction to ambient (note 2) tqfn5x6 - 28 40 c/w note 1: absolute maximum ratings are those values beyond which the life of a device may be impaired. exposure to absolute maximum rating conditions for extended periods may affect device reliability. note 2: q ja is measured with the component mounted on a high effective thermal conductivity test board in free air. the exposed pad is soldered directly on the pcb. symbol parameter range unit v in converter input voltage 3 ~ 25 v v cc , v pvcc vcc, pvcc supply voltage 4.5 ~ 5.5 v v out converter output voltage 0.75 ~ 5.5 v i out converter output current 0 ~ 8 a t a ambient temperature - 40 ~ 85 o c t j junction temperatu re - 40 ~ 125 o c r e c o m m e n d e d o p e r a t i n g c o n d i t i o n s ( n o t e 3 ) note 3: refer to the typical application circuit.
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 4 e l e c t r i c a l c h a r a c t e r i s t i c s APW8802 symbol parameter test conditions min. typ. max. unit output and reference v oltages v out output v oltage adjustable output range 0.75 - 5.5 v v ref reference voltage - 0.75 - v t a =25 o c - 0.9 - +0.9 % t a =0 o c~85 o c - 1. 3 - +1.3 % regulation accuracy t a = - 40 o c~85 o c - 1.6 - +1.6 % i fb fb input bias current v fb =0.75v - 0.02 0.1 m a r dis vout d ischarge r esistance v en =0v, v out =0.5v - 20 32 w supply current vcc plus pvcc current, pwm, en is floating, v fb =0.77v, v lx = - 0.1v - 400 750 m a i vcc vcc input bias current vcc plus pvcc current, pfm, v en =5v, v fb =0.77v, v lx =0.5v - 250 470 m a i vcc_shdn vcc shutdown current en=gnd, v cc =5v - 0 1.0 m a i pvcc_shdn pvcc shutdown current en=gnd, v pvcc =5v - 4.5 7.5 m a on - time t imer and i nternal s oft - s tart t onn nominal on t ime v lx =12v, v out =2.5v, r ton =250k w - 749 - ns t on f fast on t ime v lx =12v, v out =2.5v, r ton =100k w 280 330 380 ns t on s slow on t ime v l x =12v, v out =2.5v, r ton =400k w - 1170 - ns t on (min) minimum on t ime 80 110 140 ns t off (min) minimum off t ime v fb =0.7v, v lx = - 0.1v, ocset is open 350 450 550 ns t ss internal s oft - s tart t ime en high to v out regulation 0.9 1.2 1.5 ms internal power mosfet s high side switch resistance vcc=5v, guaranteed by design - 12 15 m w low side switch resistance vcc=5v, guaranteed by design - 12 15 m w p vcc and vcc p ower - o n - r eset threshold v pvcc_thr rising p vcc por threshold voltage 4.25 4.35 4.45 v v cc_thr risin g vcc por threshold voltage 4.25 4.35 4.45 v vcc por hysteresis - 100 - mv control inputs en high logic level (set in automatic pfm/pwm mode) 2.5 2.65 2.8 v hysteresis 100 175 225 mv en floating level (set in forced - pwm mode) 1.3 1.95 2.39 v en low logic level (set in shutdown) 0.7 1.0 1.3 v hysteresis 150 200 250 mv en leakage v en =0v - 0.1 1.0 m a refer to the typical application circuits. these specifications apply over v cc =5v, v pvcc =5v, and t a = -40 ~ 85 c, unless otherwise specified. typical values are at t a =25c.
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 5 e l e c t r i c a l c h a r a c t e r i s t i c s ( c o n t . ) apw 8802 symbol parameter test conditions min . typ . max . unit power - ok indicator pok in from lower (pok goes high) 87 90 93 % pok low hysteresis (pok goes low) - 3 - % v pok pok threshold pok out from normal (pok goes low) 120 125 130 % i pok p ok leakage current v pok =5v - 0.1 1.0 m a p ok sink current v pok =0.5v 2.5 7.5 - ma pok enable delay time en high to pok high 1.4 2.0 2.6 ms current sense i ocset i ocset sourcing current 9 10 11 m a t ci ocset i ocset t emperature c oefficient on t he b asis of 25c - 4500 - ppm/ o c v r ocset curren t - l imit t hreshold s etting r ange v ocset - gnd voltage, over a ll t emperature 30 - 200 mv over c urrent - l imit c omparator o ffset (v ocset - gnd - v pgnd - lx ) voltage, v ocset - gnd =60mv - 10 0 10 mv negative o ver c urrent - limit c omparator o ffset (v ocset - gnd - v pgnd - lx ) v oltage, v ocset - gnd =60mv, en is floating - 9.5 0.5 10.5 mv zero c rossing c omparator o ffset v pgnd - lx voltage, v en =3.3v - 9.5 0.5 10.5 mv protection s v uv u nder - voltage protection threshold v fb falling 60 70 80 % u nder - voltage protection hysteresis - 3 - % u nder - voltage debounce interval - 16 - m s u nder - voltage protection enable delay en high to uvp workable 1.4 2 2.6 ms v ovr over - voltage protection rising threshold 120 125 130 % over - voltage protection propagation delay v fb rising, dv=10mv - 1. 5 - m s t otr over - temperature protection rising threshold (note 4) - 160 - o c over - temperature protection hyste r esis (note 4) - 25 - o c refer to the typical application circuits. these specifications apply over v cc =5v, v pvcc =5v, and t a = -40 ~ 85 c, unless otherwise specified. typical values are at t a =25c. note 4: guaranteed by design.
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 6 t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s r e f e r e n c e v o l t a g e a c c u r a c y v s . j u n c t i o n t e m p e r a t u r e o c s e t s o u r c i n g c u r r e n t v s . j u n c t i o n t e m p e r a t u r e s w i t c h i n g f r e q u e n c y v s . c o n v e r t e r o u t p u t c u r r e n t s w i t c h i n g f r e q u e n c y v s . c o n v e r t e r i n p u t v o l t a g e e f f i c i e n c y v s . l o a d c u r r e n t f s w = 3 0 0 k h z , v o u t = 1 . 0 5 v s w i t c h i n g f r e q u e n c y v s . t o n r e s i s t a n c e junction temperature, t j ( o c ) o c s e t s o u r c i n g c u r r e n t , i o c s e t ( m a ) -50 -30 10 50 90 110 150 70 30 -10 130 4 16 14 12 10 8 6 -50 -30 10 50 90 110 70 30 -10 junction temperature, t j ( o c ) r e f e r e n c e v o l t a g e a c c u r a c y , v r e f ( v ) 0.740 0.745 0.750 0.755 0.760 s w i t c h i n g f r e q u e n c y , f s w ( k h z ) converter output current, i out (a) automatic pfm/pwm mode forced-pwm mode v in =19v, v out =1.05v, f sw =300khz 0.001 0.01 0.1 1 10 0.1 100 1000 10 1 s w i t c h i n g f r e q u e n c y , f s w ( k h z ) converter input voltage, v in (v) forced-pwm mode 340 320 300 280 260 7 11 13 15 17 19 21 9 converter output current, i out (a) e f f i c i e n c y ( % ) 70 80 90 60 50 100 v in =19v, automatic pfm/pwm mode 0.100 1.000 10.000 ton resistance, r ton (k w ) s w i t c h i n g f r e q u e n c y , f s w ( k h z ) v in =19v, forced-pwm mode v out =1.05v v out =2.5v 0 600 800 700 400 500 300 200 100 100 700 600 500 400 300 200
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 7 t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) c o n v e r t e r o u t p u t v o l t a g e v s . c o n v e r t e r o u t p u t c u r r e n t c o n v e r t e r o u t p u t v o l t a g e v s . c o n v e r t e r i n p u t v o l t a g e c o n v e r t e r o u t p u t v o l t a g e , v o u t ( v ) converter output current, i out (a) v in =19v, v out =1.05v, f sw =300khz automatic pfm/pwm mode forced-pwm mode 1.030 1.060 1.055 1.050 1.045 1.040 1.035 0 8 7 6 5 4 3 2 1 c o n v e r t e r o u t p u t v o l t a g e , v o u t ( v ) converter input voltage, v in (v) v out =1.05v, automatic pfm/pwm mode i out =8a i out =0a 1.01 1.07 1.05 1.03 1.09 1.02 1.04 1.06 1.08 5 7 9 11 13 15 17 19 21 23 25
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 8 o p e r a t i n g w a v e f o r m s r e f e r t o t h e t y p i c a l a p p l i c a t i o n c i r c u i t . t h e t e s t c o n d i t i o n i s v i n = 1 9 v , t a = 2 5 o c u n l e s s o t h e r w i s e s p e c i f i e d . v o u t = 1 . 0 5 v , l o a d t r a n s i e n t 1 a - > 8 a - > 1 a s w i t c h i n g w a v e f o r m m o d e t r a n s i e n t f r o m p f m t o p w m m o d e t r a n s i e n t f r o m p w m t o p f m ch1: v lx , 10v/div, dc ch2: v out , 100mv/div, ac ch3: i l , 5a/div, dc time: 20 m s/div 1 2 3 ch1: v lx , 20v/div, ac ch2: v out , 20mv/div, ac ch3: i l , 5a/div, dc time: 2 m s/div 1 2 3 ch1: v en , 2v/div, dc ch2: v lx , 20v/div, dc ch3: v out , 20mv/div, ac ch4: i l , 2a/div, dc time: 10 m s/div 1 4 2 3 ch1: v en , 2v/div, dc ch2: v lx , 20v/div, dc ch3: v out , 20mv/div, ac ch4: i l , 2a/div, dc time: 10 m s/div 1 4 2 3
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 9 o p e r a t i n g w a v e f o r m s ( c o n t . ) r e f e r t o t h e t y p i c a l a p p l i c a t i o n c i r c u i t . t h e t e s t c o n d i t i o n i s v i n = 1 9 v , t a = 2 5 o c u n l e s s o t h e r w i s e s p e c i f i e d . s h u t d o w n a t i o u t = 8 a s h u t d o w n w i t h s o f t - s t o p a t n o l o a d e n a b l e a t z e r o i n i t i a l v o l t a g e o f v o u t e n a b l e b e f o r e e n d o f s o f t - s t o p 1 4 3 2 i load =8a ch1: v en , 5v/div, dc ch2: v lx , 20v/div, dc ch3: v out , 500mv/div, dc ch4: v pok , 5v/div, dc time: 1ms/div 1 4 2 3 no load ch1: ven , 5v/div, dc ch2: v lx , 20v/div, dc ch3: v out , 500mv/div, dc ch4: v pok , 5v/div, dc time: 1ms/div 1 4 2 3 1 4 2 3 ch1: ven , 5v/div, dc ch2: v lx , 20v/div, dc ch3: v out , 500mv/div, dc ch4: v pok , 5v/div, dc time: 1ms/div ch1: ven , 2v/div, dc ch2: v lx , 20v/div, dc ch3: v out , 500mv/div, dc ch4: v pok , 5v/div, dc time: 5ms/div
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 1 0 o p e r a t i n g w a v e f o r m s ( c o n t . ) r e f e r t o t h e t y p i c a l a p p l i c a t i o n c i r c u i t . t h e t e s t c o n d i t i o n i s v i n = 1 9 v , t a = 2 5 o c u n l e s s o t h e r w i s e s p e c i f i e d . c u r r e n t - l i m i t a n d u n d e r - v o l t a g e p r o t e c t i o n s h o r t c i r c u i t t e s t 1 4 3 2 1 4 2 3 in pfm mode ch1: vpok , 5v/div, dc ch2: v lx , 20v/div, dc ch3: v out , 500mv/div, dc ch4: i l , 10a/div, dc time: 100 m s/div ch1: vpok , 5v/div, dc ch2: v lx , 20v/div, dc ch3: v out , 500mv/div, dc ch4: i l , 10a/div, dc time: 10 m s/div
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 1 1 p i n d e s c r i p t i o n pin no. name function 1 fb output v oltage f eedback p in. this pin is connected to the resistive divider that set the desired output voltage. the p ok , uvp, and ovp circuits detect this signal to report output voltage status. 2 pok power good output. po k i s a n o pen d rain o utput used to in dicate the status of the output voltage. connect the pok in to +5v through a pull - high resistor. 3 gnd signal g round for t he ic . 4, 5, 22 pgnd power g round of t he low - s ide mosfet d river and the source of internal low - sid e mosfet. 6, 7 nc no connect ion. 8 ~ 17 lx junction p oint of t he h igh - side mosfet source, o utput f ilter i nductor a nd t he l ow - side mosfet drain. connect this pin to the output inductor . lx serves as the lower supply rail for the high - side gate driver. 18 , 19, 20 vin battery voltage input pin. 21 boot supply input for t he high - side mosfet gate driver a nd a n i nternal l evel - shift c ircuit. connect to an external capacitor to create a boosted voltage suitable to drive a logic - level n - channel mosfet. 23 en en able p in of t he pwm c ontroller. when the en is above high logic level, the device is in automatic pfm/pwm mode. when the en is floating, t he device is in forced - pwm mode. when the en is below low logic level , the device is in shutdown and only low leakage current is taken from v cc and v in . 24 ton this p in is a llowed to a djust t he s witching f requency. connect a resistor r ton = 100k w ~ 600k w from ton to lx. 25 v out the vout pin makes a direct measurement for on - time generator. the vout should be connected to the top feedback resistor at the converter output. 26 ocset current - limit threshold setting pin . there is an internal source current 10 m a through a resistor from ocset to gnd. this pin is used to monitor the voltage drop across the drain and source of the low - side mo sfet for current - limit. 27 pvcc supply v oltage i nput p in for the low - side mosfet gate driver. connect +5v from th e pvcc to the pgnd. decoupling at least 1 m f of a mlcc capacitor from the pvcc to the pgnd. 28 vcc supply v oltage i nput p in for c ontrol c ircuitry. connect +5v from the vcc to the gnd. decoupling at least 1 m f of a mlcc capacitor from the vcc to the gnd.
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 1 2 b l o c k d i a g r a m fb error comparator ov uv 70% v ref 125% v ref v ref por vcc en p w m s i g n a l c o n t r o l l e r v cc thermal shutdown gnd pok vout force pwm or automatic pfm/ pwm selection frequency adjustable ton fault latch logic on-time generator 90% v ref 125% v ref z c lx ocset 10 m a current- limit delay v pvcc vin lx pgnd pvcc ugate gate driver gate driver lgate boot pvcc v lx vin vin digital soft - start/ soft - s t op pvcc
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 1 3 t y p i c a l a p p l i c a t i o n c i r c u i t boot lx pgnd fb r top 390 r gnd 1k l out 2.2 m h c boot 0.1 m f APW8802 c in 10 m f/25v (mlcc) v in v out 1.05v, 8a c out 47 m fx3 vcc gnd r vcc 2.2 c vcc 1 m f pok r pok 100k r ocset ocset pvcc en vin vout 10k 100nf 100nf +5v r ton 200k ton
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 1 4 f u n c t i o n d e s c r i p t i o n constant-on-time pwm controller with input feed-for- ward the constant-on-time control architecture is a pseudofixed frequency with input voltage feed-forward. this architec- ture relies on the output filter capacitor?s effective series resistance (esr) to act as a current-sense resistor, so the output ripple voltage provides the pwm ramp signal. in pfm operation, the high-side switch on-time controlled by the on-time generator is determined solely by a oneshot whose pulse width is inversely proportional to input volt- age and directly proportional to output voltage. in pwm operation, the high-side switch on-time is determined by a switching frequency control circuit in the on-time gen- erator block. t h e s w i t c h i n g f r e q u e n c y c o n t r o l c i r c u i t s e n s e s t h e s w i t c h - i n g f r e q u e n c y o f t h e h i g h - s i d e s w i t c h a n d k e e p s r e g u l a t - i n g i t a t a c o n s t a n t f r e q u e n c y i n p w m m o d e . t h e d e s i g n i m p r o v e s t h e f r e q u e n c y v a r i a t i o n a n d i s m o r e o u t s t a n d - i n g t h a n a c o n v e n t i o n a l c o n s t a n t - o n - t i m e c o n t r o l l e r , w h i c h h a s l a r g e s w i t c h i n g f r e q u e n c y v a r i a t i o n o v e r i n p u t v o l t a g e , o u t p u t c u r r e n t , a n d t e m p e r a t u r e . b o t h i n p f m a n d p w m , t h e o n - t i m e g e n e r a t o r , w h i c h s e n s e s i n p u t v o l t a g e o n p h a s e p i n , p r o v i d e s v e r y f a s t o n - t i m e r e s p o n s e t o i n p u t l i n e t r a n s i e n t s . a n o t h e r o n e - s h o t s e t s a m i n i m u m o f f - t i m e ( 4 5 0 n s , t y p i c a l ) . t h e o n - t i m e o n e - s h o t i s t r i g g e r e d i f t h e e r r o r c o m - p a r a t o r i s h i g h , t h e l o w - s i d e s w i t c h c u r r e n t i s b e l o w t h e c u r r e n t - l i m i t t h r e s h o l d , a n d t h e m i n i m u m o f f - t i m e o n e s h o t h a s t i m e d o u t . pulse-frequency modulation (pfm) i n p f m m o d e , a n a u t o m a t i c s w i t c h o v e r t o p u l s e - f r e q u e n c y m o d u l a t i o n ( p f m ) t a k e s p l a c e a t l i g h t l o a d s . t h i s s w i t c h o v e r i s a f f e c t e d b y a c o m p a r a t o r t h a t t r u n c a t e s t h e l o w - s i d e s w i t c h o n - t i m e a t t h e i n d u c t o r c u r r e n t z e r o c r o s s i n g . t h i s m e c h a n i s m c a u s e s t h e t h r e s h o l d b e t w e e n p f m a n d p w m o p e r a t i o n t o c o i n c i d e w i t h t h e b o u n d a r y b e t w e e n c o n t i n u o u s a n d d i s c o n t i n u o u s i n d u c t o r - c u r r e n t o p e r a t i o n ( a l s o k n o w n a s t h e c r i t i c a l c o n d u c t i o n p o i n t ) . t h e o n - t i m e o f p f m i s g i v e n b y : w h e r e f s w i s t h e n o m i n a l s w i t c h i n g f r e q u e n c y o f t h e c o n - v e r t e r i n p w m m o d e . t h e l o a d c u r r e n t a t h a n d o f f f r o m p f m t o p w m m o d e i s g i v e n b y : v v f 1 t in out sw pfm - on = in out sw out in pfm - on out in pwm) to load(pfm v v x f 1 2l v v t l v v 2 1 i - = - = forced-pwm mode the forced-pwm mode disables the zero-crossing comparator, which truncates the low-side switch on-time at the inductor current zero crossing. this causes the low-side gate-drive waveform to become the complement of the high-side gate-drive waveform. this in turn causes the inductor current to reverse at light loads while ugate maintains a duty factor of v out /v in . the benefit of forced- pwm mode is to keep the switching frequency fairly constant. the forced-pwm mode is most useful for re- ducing audio frequency noise, improving load-transient response, and providing sink-current capability for dy- namic output voltage adjustment. power-on-reset a power-on-reset (por) function is designed to prevent wrong logic controls when the pvcc or vcc voltage is low. the por function continually monitors the bias sup- ply voltage on the pvcc and vcc pins if at least one of the enable pins is set high. when the rising pvcc volt- age reaches the rising pvcc por voltage threshold (4.35v, typical) and the rising vcc voltage reaches the rising vcc por threshold (4.35v, typical), the por sig- nal goes high and the chip initiates soft-start operations. there is almost no hysteresis to por voltage threshold ( a b o u t 1 0 0 m v t y p i c a l ) . when pvcc voltage drops lower than 4.25v (typical) or vcc voltage drops lower than 4.25v (typical), the por disables the chip. en pin control when v en is above the en high threshold (2.65v, typical), the converter is enabled in automatic pfm/pwm opera- tion mode. when en pin is floating, APW8802 internal circuit will pull v en up to 1.95v (typical). furthermore, APW8802 is in forced-pwm operation mode. when v en
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 1 5 f u n c t i o n d e s c r i p t i o n ( c o n t . ) f i g u r e 1 . s o f t - s t a r t s e q u e n c e 1.2ms 2ms en v out v cc and v pvcc v pgood during soft-start stage before the pgood pin is ready, the under-voltage protection is prohibited. the over-volt- age and current-limit protection functions are enabled. if the output capacitor has residue voltage before start-up, both low-side and high-side mosfets are in off-state until the internal digital soft-start voltage equals to the v fb voltage. this will ensure that the output voltage starts from its existing voltage level. in the event of under-voltage, over-voltage, over- power ok indicator the APW8802 features an open-drain pok pin to indi- cate output regulation status. in normal operation, when the output voltage rises 90% of its target value, the pok goes high after 63us internal delay. when the output volt- age outruns 70% or 125% of the target voltage, pok sig- nal will be pulled low immediately. since the fb pin is used for both feedback and monitor- ing purposes, the output voltage deviation can be coupled directly to the fb pin by the capacitor in parallel with the voltage divider as shown in the typical applications. in order to prevent false pok from dropping, capacitors need to parallel at the output to confine the voltage deviation with severe load step transient. under-voltage protection (uvp) in the operational process, if a short-circuit occurs, the output voltage will drop quickly. when load current is big- ger than current-limit threshold value, the output voltage will fall out of the required regulation range. the under- voltage protection circuit continually monitors the fb volt- age after soft-start is completed. if a load step is strong enough to pull the output voltage lower than the under- voltage threshold, the under-voltage threshold is 70% of the nominal output voltage, the internal uvp delay counter starts to count. after 16 m s debounce time, the device turns off both high-side and low-side mosefet with latched and starts a soft-stop process to shut down the output gradually. toggling enable pin to low or recycling pvcc or vcc, will clear the latch and bring the chip back to operation. o v e r - v o l t a g e p r o t e c t i o n ( o v p ) the over-voltage function monitors the output voltage by fb pin. when the fb voltage increases over 125% of the reference voltage due to the high-side mosfet failure or for other reasons, the over-voltage protection compara- tor designed with a 1.5 m s noise filter will force the low- side mosfet gate driver fully turn on and latch high. this is below the en low threshold (1v, typical), the chip is in the shutdown and only low leakage current is taken from vcc. en pin control (cont.) d i g i t a l s o f t - s t a r t t h e a p w 8 8 0 2 i n t e g r a t e s d i g i t a l s o f t - s t a r t c i r c u i t s t o r a m p u p t h e o u t p u t v o l t a g e o f t h e c o n v e r t e r t o t h e p r o g r a m m e d r e g u l a t i o n s e t p o i n t a t a p r e d i c t a b l e s l e w r a t e . t h e s l e w r a t e o f o u t p u t v o l t a g e i s i n t e r n a l l y c o n t r o l l e d t o l i m i t t h e i n r u s h c u r r e n t t h r o u g h t h e o u t p u t c a p a c i t o r s d u r i n g s o f t - s t a r t p r o c e s s . t h e f i g u r e 1 s h o w s s o f t - s t a r t s e q u e n c e . w h e n t h e e n p i n i s p u l l e d a b o v e t h e r i s i n g e n t h r e s h o l d v o l t a g e , t h e d e v i c e i n i t i a t e s a s o f t - s t a r t p r o c e s s t o r a m p u p t h e o u t p u t v o l t a g e . t h e s o f t - s t a r t i n t e r v a l i s 1 . 2 m s ( t y p i c a l ) a n d i n d e p e n d e n t o f t h e u g a t e s w i t c h i n g f r e q u e n c y . temperature, or shutdown, the chip enables the soft-stop function. the soft-stop function discharges the output voltages to the pgnd through an internal 20 w switch.
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 1 6 f u n c t i o n d e s c r i p t i o n ( c o n t . ) f i g u r e 2 . c u r r e n t - l i m i t a l g o r i t h m c u r r e n t - l i m i t the current-limit circuit employs a ?valley? current-sens- ing algorithm (see figure 2). the APW8802 uses the low-side mosfet?s r ds(on) of the synchronous rectifier as a current-sensing element. if the magnitude of the current-sense signal at phase pin is above the current- limit threshold, the pwm is not allowed to initiate a new cycle. the actual peak current is greater than the current- limit threshold by an amount equals to the inductor ripple current. therefore, the exact current-limit characteristic and maximum load capability are the functions of the sense resistance, inductor value, and input voltage. time i n d u c t o r c u r r e n t , i l 0 i out i peak i limit d i the pwm controller uses the low-side mosfets on-re- sistance r ds(on) to monitor the current for protection against shortened outputs. the mosfet?s r ds(on) is var- ied by temperature and gate to source voltage, the user should determine the maximum r ds(on) in manufacture?s datasheet. the ocset pin can source 10 m a through an external where r ocset is the resistor of current-limit setting threshold. r ds(on) is the low side mosfets conducive resistance. i limit is the setting current-limit threshold. i limit can be expressed as i out minus half of peak-to-peak in- ductor current. the pcb layout guidelines should ensure that noise and dc errors do not corrupt the current-sense signals at phase. place the hottest power mosefts as close to the ic as possible for best thermal coupling. when com- bined with the under-voltage protection circuit, this cur- rent-limit method is effective in almost every circumstance. over-temperature protection (otp) when the junction temperature increases above the ris- ing threshold temperature t otr , the ic will enter the over- temperature protection state that suspends the pwm, which forces the ugate and lgate gate drivers output low. the thermal sensor allows the converters to start a start-up process and regulate the output voltage again after the junction temperature cools by 25 o c. the otp is designed with a 25 o c hysteresis to lower the average t j during continuous thermal overload conditions, which in- creases lifetime of the APW8802. p r o g r a m m i n g t h e o n - t i m e c o n t r o l a n d p w m s w i t c h - i n g f r e q u e n c y t h e a p w 8 8 0 2 d o e s n o t u s e a c l o c k s i g n a l t o p r o d u c e p w m . t h e d e v i c e u s e s t h e c o n s t a n t - o n - t i m e c o n t r o l a r - c h i t e c t u r e t o p r o d u c e p s e u d o - f i x e d f r e q u e n c y w i t h i n p u t v o l t a g e f e e d - f o r w a r d . t h e o n - t i m e p u l s e w i d t h i s p r o p o r - t i o n a l t o o u t p u t v o l t a g e v o u t a n d i n v e r s e s p r o p o r t i o n a l t o i n p u t v o l t a g e v i n . i n p w m , t h e o n - t i m e c a l c u l a t i o n i s w r i t - t e n a s b e l o w : ( ) ns 0 5 v v 1 . 0 v 3 2 r 10 19 t in out ton 12 on + ? ? + = - w h e r e : r t o n i s t h e r e s i s t o r c o n n e c t e d f r o m t o n p i n t o p h a s e o v e r - v o l t a g e p r o t e c t i o n ( o v p ) ( c o n t . ) action actively pulls down the output voltage. in the meantime, the output voltage is also pulled low by inter- nal discharge transistor. this ovp scheme only clamps the voltage overshoot and does not invert the output voltage when otherwise acti- vated with a continuously high output from low-side mosfet driver. it?s a common problem for ovp schemes with a latch. once an over-voltage fault condition is set, it can only be reset by toggling en, pvcc or vcc poweron- reset signal. resistor for adjusting current-limit threshold. the voltage at ocset pin is equal to 10 m a x r ocset . the relationship between the sampled voltage v ocset and the current-limit threshold i limit is given by: 10 m a x r ocset = i limit x r ds(on)
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 1 7 f u n c t i o n d e s c r i p t i o n ( c o n t . ) p r o g r a m m i n g t h e o n - t i m e c o n t r o l a n d p w m s w i t c h - i n g f r e q u e n c y ( c o n t . ) p i n . f u r t h e r m o r e , t h e a p p r o x i m a t e p w m s w i t c h i n g f r e - q u e n c y i s w r i t t e n a s : on in out sw sw on t v v f f d t = t = where: f sw is the pwm switching frequency. monitoring v phase voltage as input voltage to calculate on- time when the high-side mosfet is turned on. and then, use the relationship between ontime and duty cycle to obtain the switching frequency. the curve below is the relationship between r ton and the switching frequency f sw . f i g u r e 3 . switching frequency vs. ton resistance ton resistance, r ton (k w ) s w i t c h i n g f r e q u e n c y , f s w ( k h z ) v in =19v, forced-pwm mode v out =1.05v v out =2.5v 0 600 800 700 400 500 300 200 100 100 700 600 500 400 300 200
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 1 8 a p p l i c a t i o n i n f o r m a t i o n where 0.75 is the reference voltage, r top is the resistor connected from converter?s output to fb, and r gnd is the resistor connected from fb to gnd. suggested r gnd is in the range from 1k to 20k w . to prevent stray pickup, locate resistors r top and r gnd close to APW8802. o u t p u t i n d u c t o r s e l e c t i o n t h e d u t y c y c l e ( d ) o f a b u c k c o n v e r t e r i s t h e f u n c t i o n o f t h e i n p u t v o l t a g e a n d o u t p u t v o l t a g e . o n c e a n o u t p u t v o l t a g e i s f i x e d , i t c a n b e w r i t t e n a s : in out v v d = in out sw out in ripple v v l f v - v i = o u t p u t c a p a c i t o r s e l e c t i o n the inductor value (l) determines the inductor ripple current, i ripple , and affects the load transient reponse. higher inductor value reduces the inductor?s ripple cur- rent and induces lower output ripple voltage. the ripple current and ripple voltage can be approximated by: esr ripple esr sw out ripple out c r i v f 8c i v = d = d o u t p u t v o l t a g e s e t t i n g the output voltage is adjustable from 0.75v to 5.5v with a resistor-divider connected with fb, gnd, and converter?s output. using 1% or better resistors for the resistor-di- vider is recommended. the output voltage is determined by: w h e r e f s w i s t h e s w i t c h i n g f r e q u e n c y o f t h e r e g u l a t o r . a l t h o u g h t h e i n d u c t o r v a l u e a n d f r e q u e n c y a r e i n c r e a s e d a n d t h e r i p p l e c u r r e n t a n d v o l t a g e a r e r e d u c e d , a t r a d e o f f e x i s t s b e t w e e n t h e i n d u c t o r ? s r i p p l e c u r r e n t a n d t h e r e g u - l a t o r l o a d t r a n s i e n t r e s p o n s e t i m e . a smaller inductor will give the regulator a faster load transient response at the expense of higher ripple current. increasing the switching frequency (f sw ) also reduces the ripple current and voltage, but it will increase the switching loss of the mosfets and the power dissipa- tion of the converter. the maximum ripple current occurs at the maximum input voltage. a good starting point is to choose the ripple current to be approximately 30% of the maximum output current. once the inductance value has been chosen, selecting an inductor which is capable of carrying the required peak current without going into saturation. in some types of inductors, especially core that is made of ferrite, the ripple current will increase abruptly when it saturates. this results in a larger output ripple voltage. besides, the inductor needs to have low dcr to reduce the loss of efficiency. o u tp ut voltage ripple and the transient volta ge devia- tion are factors which have to be taken into con sider- ation when selecting an output capacitor. higher capaci- tor value and lower esr reduce the out put ripple and the load transient drop. therefore, selecting high per- formance low esr capacitors is recommended for switching regulator applications. in addition to h igh frequency noise related to mosfet turn-on and turn - o ff, the output voltage ripple includes the capaci tance voltage drop d v cout and esr voltage drop d v esr caused by the ac peak-to-peak inductor?s current. t h e s e t w o v o l t a g e s c a n b e r e p r e s e n t e d b y : these two components constitute a large portion of the total output voltage ripple. in some applications, multiple capacitors have to be paralleled to achieve the desired esr value. if the output of the converter has to support another load with high pulsating current, more capaci- tors are needed in order to reduce the equivalent esr and suppress the voltage ripple to a tolerable level. a small decoupling capacitor (1 m f) in parallel for bypass- ing the noise is also recommended, and the voltage rat- ing of the output capacitors are also must be considered. to support a load transient that is faster than the switch- ing frequency, more capacitors are needed for reducing the voltage excursion during load step change. another aspect of the capacitor selection is that the total ac cur- rent going through the capacitors has to be less than the rated rms current specified on the capacitors in order to prevent the capacitor from over-heating. ? ? ? ? ? + = gnd top out r r 1 0.75 v i n p u t c a p a c i t o r s e l e c t i o n t h e i n p u t c a p a c i t o r i s c h o s e n b a s e d o n t h e v o l t a g e r a t i n g a n d t h e r m s c u r r e n t r a t i n g . f o r r e l i a b l e o p e r a t i o n , s e l e c t - i n g t h e c a p a c i t o r v o l t a g e r a t i n g t o b e a t l e a s t 1 . 3 t i m e s
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 1 9 a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) thermal consideration l a y o u t c o n s i d e r a t i o n i n a n y h i g h s w i t c h i n g f r e q u e n c y c o n v e r t e r , a c o r r e c t l a y o u t i s i m p o r t a n t t o e n s u r e p r o p e r o p e r a t i o n o f t h e r e g u l a t o r . w i t h p o w e r d e v i c e s s w i t c h i n g a t h i g h e r f r e q u e n c y , t h e r e s u l t i n g c u r r e n t t r a n s i e n t w i l l c a u s e v o l t a g e s p i k e a c r o s s t h e i n t e r c o n n e c t i n g i m p e d a n c e a n d p a r a s i t i c c i r c u i t e l e m e n t s . a s a n e x a m p l e , c o n s i d e r t h e t u r n - o f f t r a n s i t i o n o f t h e p w m m o s f e t . b e f o r e t u r n - o f f c o n d i t i o n , t h e m o s f e t i s c a r r y i n g t h e f u l l l o a d c u r r e n t . d u r i n g t u r n - o f f , c u r r e n t s t o p s f l o w i n g i n t h e m o s f e t a n d i s f r e e w h e e l i n g b y t h e l o w s i d e m o s f e t a n d p a r a s i t i c d i o d e . a n y p a r a s i t i c i n d u c t a n c e o f t h e c i r c u i t g e n e r a t e s a l a r g e v o l t a g e s p i k e d u r i n g t h e s w i t c h i n g i n t e r v a l . i n g e n e r a l , u s i n g s h o r t a n d w i d e p r i n t e d c i r c u i t t r a c e s s h o u l d m i n i m i z e i n t e r c o n n e c t - i n g i m p e d a n c e s a n d t h e m a g n i t u d e o f v o l t a g e s p i k e . b e s i d e s , s i g n a l a n d p o w e r g r o u n d s a r e t o b e k e p t s e p a - r a t e a n d f i n a l l y c o m b i n e d u s i n g g r o u n d p l a n e c o n s t r u c - t i o n o r s i n g l e p o i n t g r o u n d i n g . t h e b e s t t i e - p o i n t b e t w e e n the signal ground and the power ground is at the nega- tive side of the output capacitor on each channel, where there is less noise. noisy traces beneath the ic are not recommended. below is a checklist for your layout: because the APW8802 build-in high-side and low-side mosfet, the heat dissipated may exceed the maximum junction temperature of the part in applications. if the junc- tion temperature reaches approximately 150 o c, both power switches will be turned off and the lx node will become high impedance. to avoid the APW8802 from exceeding the maximum junc- tion temperature, the user will need to do some thermal analysis. the goal of the thermal analysis is to deter- mine whether the power dissipated exceeds the maxi- mum junction temperature of the part. the main power dissipated by the part is approximated: p upper =i out 2 (1+tc)(r ds(on) )d+(0.5)(i out )(v in )(t sw )f sw p lower =i out 2 (1+tc)(r ds(on) )(1-d) i out is the load current tc is the temperature dependency of r ds(on) f sw is the switching frequency t sw is the switching interval d is the duty cycle note that both internal mosfets have conduction losses while the upper mosfet include an additional transition loss. the switching internal, t sw , is the function of the reverse transfer capacitance c rss . figure 4 illustrates the switching waveform internal of the mosfet. the (1+tc) term factors in the temperature dependency of the r ds(on) and can be extracted from the "r ds(on) vs. temperature" curve of the power mosfet. in APW8802 case, the maxi- mum r ds(on) is about 15m w from specification table. f i g u r e 4 . s w i t c h i n g w a v e f o r m a c r o s s m o s f e t v o l t a g e a c r o s s d r a i n a n d s o u r c e o f m o s f e t time v ds t sw k e e p t h e s w i t c h i n g n o d e s ( b o o t a n d l x ) a w a y f r o m s e n s i t i v e s m a l l s i g n a l n o d e s s i n c e t h e s e n o d e s a r e f a s t m o v i n g s i g n a l s . t h e r e f o r e , k e e p t r a c e s t o t h e s e n o d e s a s s h o r t a s p o s - i n p u t c a p a c i t o r s e l e c t i o n ( c o n t . ) h i g h e r t h a n t h e m a x i m u m i n p u t v o l t a g e . t h e m a x i m u m r m s c u r r e n t r a t i n g r e q u i r e m e n t i s a p p r o x i m a t e l y i o u t / 2 , w h e r e i o u t i s t h e l o a d c u r r e n t . d u r i n g p o w e r - u p , t h e i n p u t c a p a c i t o r s h a v e t o h a n d l e g r e a t a m o u n t o f s u r g e c u r r e n t . f o r l o w - d u t y n o t e b o o k a p p l i a c t i o n s , c e r a m i c c a p a c i t o r i s r e c o m m e n d e d . t h e c a p a c i t o r s m u s t b e c o n n e c t e d b e - t w e e n t h e d r a i n o f h i g h - s i d e m o s f e t a n d t h e s o u r c e o f l o w - s i d e m o s f e t w i t h v e r y l o w - i m p e a d a n c e p c b l a y o u t .
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 2 0 a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) l a y o u t c o n s i d e r a t i o n ( c o n t . ) s i b l e a n d t h e r e s h o u l d b e n o o t h e r w e a k s i g n a l t r a c e s i n p a r a l l e l w i t h t h e s e s t r a c e s o n a n y l a y e r . the large layout plane between the drain of the mosfets (v in and lx nodes) can get better heat sinking. the current sense resistor should be close to ocset pin to avoid parasitic capacitor effect and noise coupling. decoupling capacitors, the resistor-divider, and boot capacitor should be close to their pins. the output bulk capacitors should be close to the loads. the input capacitor?s ground should be close to the grounds of the output capacitors. locate the resistor-divider close to the fb pin to mini- mize the high impedance trace. in addition, fb pin traces can?t be close to the switching signal traces (boot and lx). f i g u r e 5 . c u r r e n t p a t h d i a g r a m f i g u r e 6 . r e c o m m e n d e d l a y o u t d i a g r a m v out lx en 23 vin agnd 3 ocset 26 8~17 APW8802 fb 4 r top pgnd r gnd l out c out l o a d c in + v in - feedback divider c top 18 + - 19 20 r ocset boot 21 c boot 4, 5, 22 grou nd pok 2 gnd 3 fb 1 nc 7 nc 6 l x 1 1 l x 1 0 l x 1 2 l x 1 3 l x 9 l x 1 4 19 vin 18 vin 16 lx 17 lx 15 lx 20 vin 2 7 p v c c 2 6 o c s e t 2 5 v o u t 2 3 e n 2 4 t o n 2 8 v c c vin pgnd lx v out c in c out vin power ground for dissipating h eat l out lx 8 pgnd 4 pgnd 5 22 pgnd 21 boot figure7. recommended minimum footprint vin pgnd lx 6 m m 5mm 1 . 5 5 m m 2 . 7 6 m m 1 . 8 5 m m 3.57mm 1.85mm 1.38mm 0.45 mm 0.34mm 0 . 3 4 m m 0.265mm * just recommend 0.265mm 0 . 6 5 m m 0.45 mm*
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 2 1 p a c k a g e i n f o r m a t i o n t q f n 5 x 6 - 2 8 d 3 e e 3 h e 1 pin 1 corner l k e 2 d 1 h d 2 pin 1 e d a 3 a 1 b nx aaa c a s y m b o l min . max . 0 . 80 0 . 00 0 . 25 0 . 35 1 . 80 1 . 90 0 . 05 1 . 33 a a 1 b d d 3 e e 3 e l millimeters a 3 0 . 20 ref tqfn 5 x 6 - 28 0 . 35 0 . 45 1 . 43 0 . 008 ref min . max . inches 0 . 032 0 . 000 0 . 010 0 . 014 0 . 071 0 . 075 0 . 052 0 . 014 0 . 018 0 . 70 0 . 056 0 . 028 0 . 002 0 . 65 bsc 0 . 026 bsc 0 . 20 0 . 008 k 5 . 90 6 . 10 0 . 232 0 . 240 4 . 90 5 . 10 0 . 193 0 . 201 0 . 063 d 2 1 . 50 1 . 60 0 . 059 0 . 111 2 . 71 d 1 2 . 81 0 . 107 0 . 143 e 2 3 . 52 3 . 62 0 . 139 0 . 075 1 . 80 e 1 0 . 071 1 . 90 h 0 . 34 ref 0 . 013 ref aaa 0 . 08 0 . 003
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 2 2 application a h t1 c d d w e1 f 330.0 ? 2.00 50 min. 12.4+2.00 - 0.00 13.0+0.50 - 0.20 1.5 min. 20.2 min. 12.0 ? 0.30 1.75 ? 0.10 5.5 ? 0.10 p 0 p1 p 2 d 0 d1 t a 0 b 0 k 0 tqfn5x6 - 28 4.0 ? 0.10 8.0 ? 0.10 2.0 ? 0.10 1.5+0.10 - 0.00 1.5 min. 0.3 ? 0.05 6.5 ? 0.10 5.3 ? 0.10 1.4 ? 0.10 (mm) d e v i c e s p e r u n i t c a r r i e r t a p e & r e e l d i m e n s i o n s package type unit quantity tqfn5x6 - 28 tape & reel 2500 a e 1 a b w f t p0 od0 b a0 p2 k0 b 0 section b-b section a-a od1 p1 h t1 a d
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 2 3 t a p i n g d i r e c t i o n i n f o r m a t i o n t q f n 5 x 6 - 2 8 c l a s s i f i c a t i o n p r o f i l e user direction of feed
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 2 4 c l a s s i f i c a t i o n r e f l o w p r o f i l e s profile feature sn - pb eutectic assembly pb - free assembly preheat & soak temperature min (t smin ) temperature max (t smax ) time (t smin to t smax ) ( t s ) 100 c 150 c 60 - 120 seconds 150 c 200 c 60 - 1 2 0 seconds average ramp - up rate (t smax to t p ) 3 c/second ma x. 3 c/second max. liquidous temperature ( t l ) time at l iquidous (t l ) 183 c 60 - 150 seconds 217 c 60 - 150 seconds peak package body temperature (t p ) * see classification temp in table 1 see classification temp in table 2 time (t p ) ** within 5 c of the spe cified c lassification t emperature ( t c ) 2 0 ** seconds 3 0 ** seconds average r amp - down rate (t p to t smax ) 6 c/second max. 6 c/second max. time 25 c to p eak t emperature 6 minutes max. 8 minutes max. * tolerance for peak profile temperature (t p ) is defined as a supplier minimum and a user maximum. ** tolerance for time at peak profile temperature (t p ) is defined as a supplier minimum and a user maximum. table 2. pb - free process ? classification temperatures (tc) package thickness volume mm 3 <350 volume mm 3 350 - 2000 volume mm 3 >2000 <1.6 mm 260 c 260 c 260 c 1.6 mm ? 2.5 mm 260 c 250 c 245 c 3 2.5 mm 250 c 245 c 245 c table 1. snpb eutectic process ? classification temperatures (tc) package thickness volume mm 3 <350 volume mm 3 3 350 <2.5 mm 235 c 22 0 c 3 2.5 mm 220 c 220 c test item method description solderability jesd - 22, b102 5 sec, 245 c holt jesd - 22, a108 1000 hrs, bias @ t j =125 c pct jesd - 22, a102 168 hrs, 100 % rh, 2atm , 121 c tct jesd - 22, a104 500 cycles, - 65 c~150 c hbm mil - std - 883 - 3015.7 vhbm ? 2kv mm jesd - 22, a1 15 vmm ? 200v latch - up jesd 78 10ms, 1 tr ? 100ma r e l i a b i l i t y t e s t p r o g r a m
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 3 - j a n . , 2 0 1 3 a p w 8 8 0 2 w w w . a n p e c . c o m . t w 2 5 c u s t o m e r s e r v i c e a n p e c e l e c t r o n i c s c o r p . head office : no.6, dusing 1st road, sbip, hsin-chu, taiwan, r.o.c. tel : 886-3-5642000 fax : 886-3-5642050 t a i p e i b r a n c h : 2 f , n o . 1 1 , l a n e 2 1 8 , s e c 2 j h o n g s i n g r d . , s i n d i a n c i t y , t a i p e i c o u n t y 2 3 1 4 6 , t a i w a n t e l : 8 8 6 - 2 - 2 9 1 0 - 3 8 3 8 f a x : 8 8 6 - 2 - 2 9 1 7 - 3 8 3 8


▲Up To Search▲   

 
Price & Availability of APW8802

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X